92 research outputs found

    Transducer-based language embedding for spoken language identification

    Full text link
    The acoustic and linguistic features are important cues for the spoken language identification (LID) task. Recent advanced LID systems mainly use acoustic features that lack the usage of explicit linguistic feature encoding. In this paper, we propose a novel transducer-based language embedding approach for LID tasks by integrating an RNN transducer model into a language embedding framework. Benefiting from the advantages of the RNN transducer's linguistic representation capability, the proposed method can exploit both phonetically-aware acoustic features and explicit linguistic features for LID tasks. Experiments were carried out on the large-scale multilingual LibriSpeech and VoxLingua107 datasets. Experimental results showed the proposed method significantly improves the performance on LID tasks with 12% to 59% and 16% to 24% relative improvement on in-domain and cross-domain datasets, respectively.Comment: This paper was submitted to Interspeech 202

    Hierarchical Cross-Modality Knowledge Transfer with Sinkhorn Attention for CTC-based ASR

    Full text link
    Due to the modality discrepancy between textual and acoustic modeling, efficiently transferring linguistic knowledge from a pretrained language model (PLM) to acoustic encoding for automatic speech recognition (ASR) still remains a challenging task. In this study, we propose a cross-modality knowledge transfer (CMKT) learning framework in a temporal connectionist temporal classification (CTC) based ASR system where hierarchical acoustic alignments with the linguistic representation are applied. Additionally, we propose the use of Sinkhorn attention in cross-modality alignment process, where the transformer attention is a special case of this Sinkhorn attention process. The CMKT learning is supposed to compel the acoustic encoder to encode rich linguistic knowledge for ASR. On the AISHELL-1 dataset, with CTC greedy decoding for inference (without using any language model), we achieved state-of-the-art performance with 3.64% and 3.94% character error rates (CERs) for the development and test sets, which corresponding to relative improvements of 34.18% and 34.88% compared to the baseline CTC-ASR system, respectively.Comment: Submitted to ICASSP 202

    Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

    Full text link
    Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data

    Cross-modal Alignment with Optimal Transport for CTC-based ASR

    Full text link
    Temporal connectionist temporal classification (CTC)-based automatic speech recognition (ASR) is one of the most successful end to end (E2E) ASR frameworks. However, due to the token independence assumption in decoding, an external language model (LM) is required which destroys its fast parallel decoding property. Several studies have been proposed to transfer linguistic knowledge from a pretrained LM (PLM) to the CTC based ASR. Since the PLM is built from text while the acoustic model is trained with speech, a cross-modal alignment is required in order to transfer the context dependent linguistic knowledge from the PLM to acoustic encoding. In this study, we propose a novel cross-modal alignment algorithm based on optimal transport (OT). In the alignment process, a transport coupling matrix is obtained using OT, which is then utilized to transform a latent acoustic representation for matching the context-dependent linguistic features encoded by the PLM. Based on the alignment, the latent acoustic feature is forced to encode context dependent linguistic information. We integrate this latent acoustic feature to build conformer encoder-based CTC ASR system. On the AISHELL-1 data corpus, our system achieved 3.96% and 4.27% character error rate (CER) for dev and test sets, respectively, which corresponds to relative improvements of 28.39% and 29.42% compared to the baseline conformer CTC ASR system without cross-modal knowledge transfer.Comment: Accepted to IEEE ASRU 202
    • …
    corecore